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Abstract 

The notion of a translation map in a quantum principal bundle is introduced. A translation map 
is then used to prove that the cross sections of a quantum fibre bundle E(B, V, A) associated to a 
quantum principal bundle P(B, A) are in bijective correspondence with equivariant maps V + P. 
and that a quantum principal bundle is trivial if it admits a cross section which is an algebra 
map. The vertical automorphisms and gauge transformations of a quantum principal bundle are 
discussed. In particular it is shown that vertical automorphisms are in bijective correspondence 
with Adn-covariant maps A + P. 
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1. Introduction 

Quantum fibre bundles generalise the concept of a fibre bundle [ 121 which plays a vital 
role both in mathematics and physics [l,lO]. The main idea of this generalisation is to 
replace the algebra of functions on a structure group by a Hopf algebra [21] or a quantum 
group [7], and the algebras of functions on the base manifold, fibre, etc. by non-commutative 
algebras. Such a generalisation of a fibre bundle was proposed by Brzezinski and Majid [3]. 
The general considerations of [3] were illustrated by reference to an example of a canonical 
connection in the quantised Hopf bundle, i.e. by the deformation of a configuration that is 
known in physics as the Dirac monopole. The generalisation of fibre bundles proposed in [3] 
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was then developed, partly independently, by various authors [4,5,&l 1,181. Although our 
work in [3] was motivated by physics, i.e. we aimed at a quantum group generalisation of 
gauge theories, the constructed objects seem to have more fundamental meaning reaching 
far beyond this particular application. It is therefore important not only to study physical 
constructions that may result from the quantum group generalisation of gauge theories but 
also to analyse the geometric structure of quantum fibre bundles. 

In this paper we show that quantum fibre bundles enjoy some properties similar to the 
properties of classical fibre bundles. In particular we prove that cross sections of a quantum 
fibre bundle E associated to a quantum principal bundle P are in one-to-one correspondence 
with equivariant maps defined on the fibre of E with values in P. We then deduce that if 
a quantum principal bundle has a cross section which is an algebra map, then the bundle 
is trivial. We also show how to interpret gauge transformations of a non-trivial quantum 
principal bundle in terms of vertical automorphisms, and how to identify them with the 
maps defined on a quantum structure group with values in P and covariant under the adjoint 
coaction. All these results are in perfect correspondence with the classical situation, the only 
difference being that while in the case of a classical principal bundle gauge transformations 
may be viewed, via the above identifications, as sections of the associated adjoint bundle, in 
the case of quantum bundles such an interpretation is impossible because a quantum adjoint 
bundle does not exist. 

In the classical case the above results are usually discussed in the context of locally trivial 
bundles and they are proved first for a trivial bundle and then deduced globally by patching 
trivial bundles together. Our experience in working with quantum fibre bundles tells us 
however that, although the notion of a locally trivial quantum bundle may be rigorously 
defined [3,18], the resulting construction is not so natural as the classical one and usually 
leads to some technical difficulties. Therefore we prefer not to assume the local triviality 
of quantum bundles as long as possible and we employ a technique of proving the above- 
mentioned results that does not make use of the local structure of a bundle. The main tool 
that allows us to avoid the use of locally trivial bundles in this paper is a non-commutative 
generalisation of a translation map. 

Classically, a translation map is defined as follows. Assume that we have a manifold with 
a free action of a Lie group G. Every two points on an orbit are then related by a unique 
element of G. A translation map assigns such an element of G to any two points on an orbit. 
The notion of a principal bundle is equivalent to the existence of a continuous translation 
map [ 12, Section 4.21. We construct the non-commutative version of a translation map by 
dualisation and show that the notion of a quantum principal bundle is equivalent to the 
existence of this generalised translation map. We then use this map throughout the paper to 
prove the above-mentioned results. 

Our paper is organised as follows. In Section 2 we briefly summarise the basic facts about 
Hopf algebras and quantum bundles. In Section 3 we define a translation map in a quantum 
principal bundle and analyse some of its properties. Section 4 is devoted to analysis of 
cross sections of a quantum fibre bundle. In Section 5, we identify vertical automorphisms 
of a quantum principal bundle with the maps covariant under the adjoint coaction, and 
give various equivalent descriptions of gauge transformations of a trivial quantum principal 
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bundle. The paper ends with a computation of the gauge group for examples of bundles 
with finite structure groups in Section 6. 

2. Preliminaries 

2. I. Notation 

Here we summarise the notation we use in the sequel. A denotes a Hopf algebra over a 
field k of real or complex numbers with a coproduct A : A -+ A 8 A, counit E : A - k 
and the antipode S : A + A [21]. For a coproduct we use an explicit expression A(a) = 
a( 1) @ a(z), where the summation is implied according to the Sweedler sigma convention 
[21], i.e. a(l) 8 a(2) = CiE, a(l)’ @ a(2ji for an index set I. We also use the notation 

a(l)@.a(2)@.. .@a(,,) = (A@id@.:.@id) o ... o (A&d) o A, 

n-2 

which describes a multiple action of A on a E A. 
If A is a Hopf algebra then A* denotes a dual Hopf algebra. A* has an algebra structure 

induced from the coalgebra structure of A and a coalgebra structure induced from the 
algebra structure of A. For example VX. y E A*, Va, b E A, (xy.a) = (x. a(l))(.v,a(z)). 
(Ax, a@b) = (x, ab), etc., where ( , ) : A*@A + k denotes the natural pairing. 

Recall that a vector space V is called a right A-comodule if there exists a linear map 
PR : V -+ V@A, called a right coaction, such that @R&d) o PR = (id@A) o PR and 
(id@%) o PR = id. Similarly, a vector space V is called a left A-comodule if there exists a 
linear map pi : V + A@V, called a left coaction, such that (A&d) o pt = (id@DpL) o pi 
and (e&d) o pi = id. We say that a unital algebra P over k is a right A-comodule algebra 
if P is a right A-comodule with a coaction AR : P -+ P @ A, and AR is an algebra map. 
The algebra structure of P@A is that of a tensor product algebra. For a coaction AR we use 
an explicit notation ARU = u ci) @ u@), where the summation is also implied. Notice that 
u(l) E P and uC2) E A. 

If P is a right A-comodule algebra then PA denotes a fixed-point subalgebra of P. 
i.e. PA = {u E P: ARU = I* @ 1). PA is a subalgebra of P with a natural inclusion 
j : PA c, P. In what follows we do not write this inclusion explicitly but it should be 
understood that the elements of PA are viewed as elements of P via j. 

Let A be a Hopf algebra, B be a unital algebra over k, and let f, g : A --+ B be 
linear maps. A convolution product of f and g is a linear map f * g : A + B given 
by (f * g)(a) = f(a(l))g(a(z)) for any a E A. With respect to the convolution product. 
the set of all linear maps A + B forms an associative algebra with the unit 1~6. We say 
that a linear map f : A + B is convolution invertible if there is a map f -’ : A --+ B 
such that f * f-’ = f-’ * f = lee. The set of all convolution invertible maps A + B 
forms a multiplicative group. Similarly if V is a right A-comodule and f : V - B. 
g : A + B are linear maps then we define a convolution product f * g : V -+ B to be 

(f *g)(u) = f(ws(v(2’). 
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In this paper we work with a universal differential structure [ 13,141. 

2.2. Quantumjbre bundles 

In this section we recall the basic elements of the theory of quantum principal and 
associated bundles [3]. 

Let A be a Hopf algebra, P a right A-comodule algebra with a coaction AR : P + P @J A. 
Wedefineamapx: P@P+ P@A, 

x = (. @ id) o (id @ AR). (1) 

Explicitly, x (u @ u) = uvCi) 8 v@) for any u, v E P. We say that the coaction AR is free 
if x is a surjection. We define also a map -: P2 --+ P 8 kere by-= x lp2. Here and 
below, for any algebra P, P2 c P@P denotes the kernel of the multiplication . in P. Let 
B = PA. We say that the coaction AR of A on P is exact if ker” = P B2 P. 

Definition 2.1 ([3]). Let A be a Hopf algebra, (P, AR) be a right A-comodule algebra and 
let B = PA. We say that P (B, A) is a quantum principal bundle with universal differential 
structure, with a structure quantum group A and a base B if the coaction AR is free and 
exact. 

The basic examples of quantum principal bundles are the trivial bundle P (B, A, @) with 
trivialisation @ : A + P [3, Example 4.21, and the bundle P(B, A, X) [3, Lemma 5.21. In 
the latter case P and A are Hopf algebras and n : P -+ A is a Hopf algebra projection, 
used in the construction of a quantum homogeneous space B = PA. A large number of 
examples of quantum principal bundles P( B, A, n) has been found recently in [ 161. 

For a trivial quantum principal bundle P (B, A, @) one defines a gauge transformation 
as a convolution invertible map y : A -+ B such that v( 1) = 1. The set of all gauge 
transformations of P( B, A, @) forms a group with respect to the convolution product. This 
group is denoted by d(B). A map 9 : A + P is a trivialisation of P (B, A, (P) if and only 
if there exists y E d(B) such that p = y * (0. 

Definition 2.2 ([3]). Let P (B, A) be a quantum principal bundle and let V be a right AOP- 
comodule algebra, where A”P denotes the algebra which is isomorphic to A as a vector 
space but has an opposite product, with coaction PR : V + V 8 A. The space P @ V 
is naturally endowed with a right A-comodule structure AE : P 8 V + P 8 V 8 A 

given by AE(U @I v) = u(I) @ vCi) @ u@)@) foranyu E Pandv E V.Wesaythatthe 
fixed-point subalgebra E of P@A with respect to AE is a quantumjbre bundle associated 
to P(B, A) over B with structure quantum group A and standard fibre V. We denote it by 
E = E(B, V, A).2 

’ A slightly different definition of E( B. V. A) was proposed in [ 1 I]. The formalism developed in this paper 
can be equally well applied to quantum fibre bundles in the sense of [ 111. 
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3. Definition and properties of a translation map 

In this section we give a definition and analyse transformation properties of a translation 
map in a quantum principal bundle. 

Definition 3.1. Let P(B, A) be aquantum principal bundle. A linear map T : A -+ P@B P. 
given by r(a) = ciEl U; @mu;. where ciGl U; @ u; E ~~‘(1 @a), is called a translation 
map. We will often use an explicit notation t(u) = t(l)(u)@~r(*)(u). 

Since x is a surjection, r is defined on the whole of A. Moreover, if a = 0 then, by 
exactness of thecoaction, thecorresponding ciE, u;@u; E PB* P. Hence CiE, u;@)Bu; = 
0 and the map t is well-defined as a linear map. In fact, a translation map of Definition 3.1 
is well-defined if and only if P is a total space of a quantum principal bundle. 

Lemma 3.2. Let P be a right A-comodule algebra with a free coaction AR : P --+ P @ A. 
Let B = PA. If there is a translation map t : A -+ P@B P in P then the coaction AR is 
exact and hence there is a quantum principal bundle P (B. A). 

Pro05 We need to show that if ciEl U;@u; E ker- then ciE, u;@u; E PB2P. Take any 
ciE1 u;@u; E ker- then CiE, u;@u; E x-‘( 1 8 0). Since there is a translation map in P 
we deduce that ciE, U; 8 Bu; = 0, what implies that ciE, U;@u; E PB* P. IJ 

Definition 3.1 of a translation map reproduces exactly the classical definition [ 12, Defi- 
nition 4.2.11, but in a language of algebras of functions on manifolds rather than manifolds 
themselves. Classically, if X is a manifold on which a Lie group G acts freely then the trans- 
lation map ? : X x MX + G, where M = X/G, is defined by ui(u. u) = u. Dualising 
this construction we arrive immediately at Definition 3.1. 

Example 3.3. In a trivial quantum principal bundle P (B, A, 0) the translation map is given 

by 

(2) 

Prooj Using the fact that the trivialisation @ is an intertwiner, i.e. AR@ = (@ @ id)A, 
and that @ (1) = 1 we obtain 

for any a E A. Hence the map 5 given by Eq. (2) is a translation map as stated. 0 

Example 3.4. In a quantum principal bundle P (B, A, n) on a quantum homogeneous space 
B the translation map t : A --+ P @I BP is given by 

r(a) = SU(I) 8 w(2), (3) 

where u E n-‘(a). 
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ProojI For any a E A we apply the map x to SU(~)@)U(~), where u E n-‘(a), to obtain 

x(su(l)@4(2)) = (s41))u(2)(1)@'u(2)(2) = (Su(l)b(2)@.nb(3)) 

= l@r(u) = l@X2. 

We conclude that t given by Eq. (3) is a translation map as stated. 0 

Before we analyse some properties of a translation map in a quantum principal bundle we 
study the behaviour of the map x, given by Eq. (l), with respect to the coaction AR. Firstly 
we observe that if P is a right A-comodule then also P 63 P is a right A-comodule with a 
coaction A: = (id @I id @ .) o (id @ op @ id) o (AR 81 AR), where ap_ : P 8 P + P @J P 

is a twist map op : u 8 v I-+ u 18 u. Explicitly, Af(u @I V) = u(l) @ ,(i) g) u(i),(a 

Secondly, both P and A are right A-comodules with the coactions AR : P + P @ A and 
Adn : A + A @I A, Adn(a) = u(2) @ (Su(t))ug). Therefore P 63 A is a right A-comodule 
with the coaction 

Af = (id @ id @ .) o (id @ op~ @ id) o (AR @ AdR), 

where opA : P @3 A + A @ P is a twist map. 
Finallywedefinealinearmapu : P@A + A@P@A,u : u@u H u(2)Su(~)~u(1)&z(~). 

Now we can prove the following lemma. 

Lemma 3.5. Let P be a right A-comodule algebra and let x : P @ P -+ P @ A be given 
by (1). Then 
1. (id@x) o (0pA o AR&d) = v o x; 
2. (x@id) o (idBAR) = (id@A) o x; 
3. (x&d) o A: = Af o x. 

Proo$ Since all the maps discussed in this lemma are linear it suffices to prove the required 
equalities for any U&J E PC3 P. To prove the first assertion we compute 

On the other hand 

Thus 

(id@x) o (bpA o ARC&d) = u o x 

and the first assertion of the lemma holds. 
The second assertion follows from the definition of x and the fact that AR is a coaction. 

Explicitly, 
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(X&d) o (id@dR) = (@id@id) o (id@AR@id) 0 (id@&) 

= (.@id@id) o (id@id@A) 0 (idCUR) 

= (id@A) o (@id) o (id@&) = (id@A) 0 X. 

Finally, the third assertion was proven in [3, Lemma 4.31. It is also a consequence of the 
first two assertions. c 

Now we can state the proposition that collects the transformation properties of a transla- 
tion map in a quantum principal bundle. 

Proposition 3.6. The translation map t : A + P 8’~ P in a quantum principal bundle 
P (B, A) has the following properties: 
1. ((TPA o AR @IB id) o t = (S @ t) o A; 
2. (id @IB AR) o r = (T @ id) o A; 
3. AFot = (r@id)oAdR; 
4. 0 t = It. 

ProoJ 
1. Let s(a) = T(‘)(a)@Bt(*)(a) for any a E A. The first assertion of Lemma 3.5 yields 

(idaX) o (UPA o AR @ id)(r(‘)(a)@r(*)(a)) = Sacl,@l@a(2). 

Since X (t(‘)(a)@pt(*)(a)) = l@a for any a E A we immediately deduce that 

(oPA o AR 8~ id) 0 r = (S 8 r) 0 A. 

2. Using the second assertion of Lemma 3.5 we obtain 

(idBEAn) o t(a) = ~(‘)(a)~~t(2)(a)‘i’~~(2’(a)‘i’ 

=t (‘)(a(l+8Bt (*)(q~j)@.a(2) = ~(qlNq2). 

i.e. the assertion. 
3. The third assertion of Lemma 3.5 yields for any a E A 

(XCGd) o Af(t(“(a)@r’*‘(a)) = l@AdR(a) = l@a(2)@Sa(l)a(3). 

Hence, using the definition of t, we immediately find that 

A: o T = (t@id) o AdR. 

4. For any a E A we have 

,(1)(a),(2)(a)(i)~,,(2)(a)(z) = l@a. (4) 

Applying idBe to both sides of Eq. (4) we immediately obtain the assertion. This ends 
the proof of the proposition. 0 
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4. Cross sections of a quantum fibre bundle 

In this section we use the notion of a translation map in a quantum principal bundle 
P(B, A) to identify cross sections of a quantum fibre bundle E(B, V, A) with equivariant 
maps V + P. Recall that a linear map 4 : V + P is said to be equivariant if AR+ = 
($@id)pR, where PR is a right coaction of A on V. In particular, our identification implies 
that a quantum principal bundle is trivial if it admits a cross section which is an algebra 
map. We begin with the following definition. 

Definition 4.1. Let E(B, V, A) be a quantum fibre bundle associated to a quantum principal 
bundle P( B, A). A left B-module map s : E -+ Bsuchthats(1) = 1 iscalledacross 
section of E(B, V, A). The set of cross sections of E(B, V, A) is denoted by f(E). 

Lemma 4.2. Ifs : E -+ B is a cross section of a quantum jbre bundle E (B, V, A) then 
s o jE = id, where jE : B of E is a natural inclusion jE : b H b@ 1 v. 

Proof For any b E B, s o jE(b) = s(b@l) = bs(1) = b. 0 

The result of trivial Lemma 4.2 justifies the term cross section used in Definition 4.1. We 
remark that in [3] cross sections of a quantum fibre bundle were defined as maps E -+ B 
having the property described in Lemma 4.2. Definition 4.1 is more restrictive than that of 
[3] since the fact that s o jE = id does not imply that s is a left B-module map. We also 
remark that the definition of a cross section of a quantum fibre bundle analogous to the one 
we use here was first proposed in [ 111. 

Now we can state the first of two main results of this section. 

Theorem 4.3. Let A be a Hopf algebra with a bijective antipode. Cross sections of a 
quantumfibre bundle E(B, V, A) associated to a quantum principal bundle P( B, A) are 
in bijective correspondence with equivariant maps 4 : V + P such that 4 (1) = 1. 

Proof The fact that each equivariant map 4 : V + P induces a map s such that s o jE = id 
by s = (id%@) was proved in [3, Proposition AS]. Clearly, s(bx) = bs(x) for any b E B 
and x E E, and s( 1) = 1, hence s defined above is a cross section of E (B, V, A). 

Conversely, for any s E F(E) we define a map 4 : V + P by 

where t(a) = ~(‘)(a)@ut(~)(a) is a translation map in P(B, A). We observe that this 
definition of # makes sense since s is a B-module map and, by Proposition 3.6, Vu E V, 

T(S-~,(~))@L+~) E PmBE. 

Explicitly, 
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= s”‘(S-lv(~)(,,)~at’2,(S -I,(Z) - - (2))(1)~U(l)~t(2)(S_lU(2)(2))(2)V(2)(1) 

= s’1’(s-‘u(~+$@BT ‘2’(S-lv’-‘(3,)~,,(T)~(S-lv(2)(2))v(2)(]) 

= s(s-‘@)@,,(i)@l. 

Clearly, @( 1) = 1. Furthermore, using Proposition 3.6 we find that for any u E V 

AR$(u) = A~(t~1~(S~1~~i~)~(t~2~(S~1~~Z~)~~~i~) 
= (p(S-lu(“) ci, ) s(r'2'(S-1U(Z))~~(i))~~(l)(S-lV(Z))(Z) 

= (,(~)(s-~,~~~~l,)(i)s(s(2)(s-l~~~~~,~)~~~~~~~~ o s-l&,,, 

=qqIJ"')@l UC') = (@8id) o ,,R. 

hence 4 is an equivariant map as required. 
Therefore we have constructed the maps 6’ : C$ H .(id@$) and 8 : s H c$. where 4 is 

given by Eq. (5). We now show that they are inverses to each other. For any s E T(E) and 
Ciel Ui@ui E E we have 

(0 O 8)(S) C Uj@Uj 
i ) = C Uj8(S)(Uj) 

iEI iEl 

1 c ,iS(l)(S--IUi(~))s(t(2)(S-IUi(Z))~uicl)). 
iEI 

Further, using Proposition 3.6 we find 

(O.PA o AR@Bid@id) C UiT (l)(S-l,i(2))~98~(2)(s-lvi(Z))~~i(i) 

icl 

= ~ui%p(2)@ui ci,,cl)(s-1ui(i)(l))~B~(2)(s-tui(2)(,~)~vi(l) 

iel 

= id@(@~Bid@id) o (id@? o S-‘@id) o (id@ovA o PR) 

( 

c.i(i),i(i,~,i(i)~,ici) 

icl 

Since tie, ui@ui E E we obtain 

(op~ o AR@nid@id) c Uit (~)~s-1u.(~~)~)85(2)~s-ly.(Z~)~~.(i) I I I 
icl 

= id@(@B@id@id) o (id@r o S-‘&d) o (idaOvA o pi) 

=c 
l~Uit(l)(S-1Ui(Z))~~~(2)(S-1Ui(Z))~’Zli(i). 

icl 

Hence 

c 
uiS(1)(S-tUi(Z))~~t(2)(S-lZli(Z))~’Vi(i) E BaBE. 

icI 
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Therefore using the fact that s is a left B-module map and Proposition 3.6 again, we obtain 

(e 0 8)(s) c Uic3U~ ( ) = S(UiT ~1~~s-1ui~~~~s~2~~s-1uicZ~~~uici~~ 
iEI 

Conversely, for any u E V and equivariant r#~ : V + P 

(8 0 e)(c))(u) = t(1)(S-lu(~))e(~)(t(2)(S-‘V(~))~u(i)) 
=t (1)(s-1,(~)),(2)(s-~,~~~)~(,(i~) = 4(u). 0 

Remark 4.4. There is a certain class of quantum fibre bundles [4, Definition 1 l] for which 
Theorem 4.3 holds even if the antipode S : A + A is not bijective. We consider a left 
A-comodule algebra with a coaction ,Q_ : V + A@V. We view V as a right A“P-comodule 
algebra with a right coaction PR = (id@&) o 0~” o pi, where 0~” : A@V + VCQA is a 
twist map, and consider a quantum fibre bundle E( B, V, A) associated to P( B, A). In the 
case of such a bundle, to each cross section s we associate a map I$ : V -+ P given by 
4 = (Gid) o (id@BS) o (t@id) o pt_ and proceed as in the proof of Theorem 4.3 to show 
that s H 4 establishes the required bijective correspondence. 

Example 4.5. Let E(B, V, A) be a quantum fibre bundle associated to a trivial quantum 
principalbundle P(B, A, @). Inthiscaseeveryelementof E hastheform tie, biOE(ui), 

where bi E B and ui E V, and 0~ : V -+ E, @E : v H @(S-‘U@))@~(~) [3, Appendix]. 
The isomorphisms 8 and 8-l of the proof of Theorem 4.3 read 

K’(S)(U) = @-‘(s- ’ d”)s(@E($))) 

for any equivariant 4 : V --+ P and s E r(E). Notice that the map 0-l (s) obtained in this 
way is different from the equivariant map 4 discussed in [3, Proposition A6]. 

If E( B, V, A) is of the type described in Remark 4.4 then S-’ disappears from definitions 
of 8 and 8-l. Explicitly we have 

e(4) (gh@EiV,) = zhiC@ *$JCvi>. e-b = a-l *(Sow 

where * denotes convolution product between the maps f : A + P, g : V -+ P, given by 

f *g=.o(f@g)oPL. 

Before we describe an important corollary of Theorem 4.3, we state a lemma that allows 
one to view a quantum principal bundle as a quantum fibre bundle. 
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Lemma 4.6. A quantum principal bundle P (B, A) is afibre bundle associated to P( B, A ) 
with thejibre which is isomorphic to A as an algebra and with the coaction pR = (id@S)o A’, 

where A’ denotes the opposite coproduct, A’(a) = a(2)@a(l). 

ProojI Firstly we show that the total space E of the bundle constructed in the lemma is 
eqUd to ImAR. We take any u(~)@u(~) E ImAR. Then 

AE(,(l),&%) = u(I)@u(% (,,@u(~)(,,su’~),1, = u~l)@u(~)@l, 

hence u(~)@u(‘) E E. Conversely, let xi,, ui@a’ E E. Then 

c Ui’i’~Ui(2)~Ui’2’SUi~,) = CUi@U’@l. 
it1 icl 

Applying id@ . OoA, where CA : ANA + A@A is a twist map, to both sides of the above 
equation we obtain 

C Cc(U’)U;(i)@Ui(i), Ui@U’ = 

iEl icl 

hence tie, ui@a’ manifestly lies in ImAa. 
Secondly, we observe that ImAa E’ P as algebras, the isomorphism being provided by 

the coaction AR. Clearly AR : P -+ ImAR is a surjection. Moreover, if ARU = 0 then 
u = (id@‘E)Aau = 0, hence kerda = (0). Since AR is an algebra map, the isomorphism 
is established. Therefore we may identify E with P and P (B, A) is a quantum fibre bundle 
as stated. 0 

Corollary 4.7. Cross sections s : P -+ B of a quantum principal bundle P( B, A) are 
in bzjective correspondence with the maps 4 : A + P such that ARK = (@@S)A and 
4(l) = 1. 

ProojY We identify P(B, A) with a quantum fibre bundle E(B, A. A) of Lemma 4.6 and 
then apply Theorem 4.3. When the total space E = ImAR is viewed back as P then the 
bijective maps 8, 6 come out as 8 : C#J H id * 4 and e : s H .(id@Bs)r. By this 
identification we see that we need not assume that the antipode is bijective since S does 
not enter the definition of e. On the other hand it also follows from the fact that P(B, A) 
is a fibre bundle of the type described in Remark 4.4. One can also check directly that 8. 6 
provide the required correspondence. 0 

We notice that if A has a bijective antipode S, the sections of a quantum principal bundle 
P(B. A) are in one-to-one correspondence with the maps @ : A --+ P such that @( 1) = 1 
and AR o + = (id@+) o A. We simply need to define + = 4 o S-‘, where 4 is given by 
Corollary 4.7. 

Proposition 4.8. Any trivial quantum principal bundle P (B, A, @) admits a section. Con- 
versely, if a bundle P(B, A) admits a section which is an algebra map then P( B, A) is 
trivial with the total space P isomorphic to B@A as an algebra. 



360 ‘I: Brzeziriski/.lournal of Geometry and Physics 20 (1996) 349-370 

Pt-oc$ A convolution inverse of a trivialisation @ of a trivial quantum principal bundle 
P(B, A, @) satisfies the assumptions of Corollary 4.7, hence s = id * @-’ is a section of 
P(B, A, ~0). Conversely, assume that an algebra map s : P + B is a section of P(B, A). 
Clearly, s is a B-bimodule map, hence we can define a linear map @ : A + P, @ = 
.(s @ Bid) o r. Let 4 be a map g(s) constructed in Corollary 4.7. We will show that @ 
and 4 are convolution inverses to each other. It will then follow that @ is a trivialisation of 
P(B, A). We have 

The symbol r’(t)(u) @ r’(2) (a) here denotes the second copy of r(u) and we have used 
Proposition 3.6 to deduce that the expression in the brace is in B. Similarly, 

w(l))@(q2)) = r(‘)(a(l))s(t(2)(u(1)))s(t’(‘)(ao>>z”2)(u~2~) 

= t(‘)(u(,))s(r(2)(u(1))r’(1)(,(2)))s’(2)(u~2~) 

= t~‘~(u(~))t~2~(u(~))~‘~‘~(u~2~)~’~2~(u~2~) = e(a). 

As before we have used Proposition 3.6 to deduce that the expression in the brace is in B. 
To prove that P 2 B@A as algebras we consider a map 0 : P + B@A, 0 = 

(s@id) o AR. Clearly, 0 is an algebra map since both s and AR are algebra maps. Moreover 
the map 0 : P --f B@A, 6 : b&z I-+ bs(t(*)(u))~(~)(u), is an inverse of 0. Explicitly, 

0 0 &(6@u) = s(bs(t(1)(u(l)))t(2)(u(*)))~u(2) 

= bs(t~‘~(~~~,))s(t~~~(u~~~))~u~p = b@u, 

and 

Therefore we have obtained the criterion of triviality of a quantum principal bundle 
P (B, A) which naturally generalises the classical case. In the classical limit all algebras are 
assumed commutative and all maps are algebra maps, hence Proposition 4.8 states simply 
that a classical principal bundle is trivial if and only if it admits a cross section. 

We also remark that the criterion of triviality of a quantum principal bundle similar to the 
one in Proposition 4.8 was proved in [4, Theorem 21 in the case of locally trivial bundles. 
The locally trivial bundles used there have total spaces locally isomorphic’ to the tensor 
product algebras BBA. We see that using the notion of a translation map we need not 
assume that a quantum principal bundle is locally trivial to prove Proposition 4.8. This fact 
reflects precisely the classical case in which the local triviality of a principal bundle is not 
necessary for validity of a classical version of Proposition 4.8 [ 12, Section 4.81. 
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Remark 4.9. We would like to emphasise that the existence of a cross section of a quantum 
principal bundle does not necessarily imply that the bundle is trivial. As an example of a 
non-trivial quantum principal bundle admitting a cross section we consider the quantum 
Hopf fibration SU,(2)($, k[Z, Z-r], rr) [3, Section 5.21. The total space of this bundle is 
the quantum group SU, (2), as an algebra generated by the identity and a matrix 

T = (tii) = 

(see [9]). The base space Si c SU, (2) is a quantum two-sphere [ 191, defined as a fixed-point 

subalgebra, Si = SI!I,(~)~~~*~-‘). 

It was shown in [3] that SU,(2)($, k[Z, Z-l], n) is a non-trivial quantum principal 

bundle on the quantum homogeneous space St. We consider a linear map 4 : k[ Z, Z-’ ] -+ 
SU, (2) given by 

$(I) = 1, 4(Z”) = P, f$(Z_“) = a!y” 

for any positive integer n. The map 4 satisfies the hypothesis of Corollary 4.7, hence it 
induces a cross section s : SU, (2) -+ Si, s : u H u(~)~(IT(u(~))). One can clearly check, 
however, that s is not an algebra map. 

Finally we notice that in the semi-classical limit, 4 -+ 1, the quantum principal bundle 
SU,(2)(S:, k[Z, Z-l], n) reduces to the classical Hopf fibration written in terms of alge- 
bras of functions on manifolds. Also in this case the map 4 above can be defined and hence 
the classical Hopf bundle admits a cross section s in the sense of Definition 4.1. But since 
s is not an algebra map, the cross section obtained in this way is not continuous. 

5. Vertical automorphisms of a quantum principal bundle 

Definition 5.1. Let P(B, A) be a quantum principal bundle. Any left B-module automor- 
phism 3 : P + P such that 3(l) = 1 and An3 = (3 8 id)& is called a vertical 
automorphism of the bundle P( B, A). The set of all vertical automorphisms of P(B, A) is 
denoted by Aute (P). 

Elements of A&B(P) preserve both the base space B and the action of the structure 
quantum group A of a quantum principal bundle P(B, A). AutB( P) can be equipped with 
a multiplicative group structure . : (31,.?$ H 32 o 31. Vertical automorphisms are often 
called gauge transformations and Autg( P) is termed a gauge group. 

Proposition 5.2. Vertical automorphisms of a quantum principal bundle P (B, A) are in 
bzjective correspondence with convolution invertible maps f : A -+ P such that f (1) = 1 
and ARK = (f C3 id)Adn. 

ProojI Let f be a map satisfying the hypothesis of the proposition. Define a map 3 : P + 
P by 3 = id * f. We show now that the map 3 is a vertical automorphism. First we need 



362 T. Brzeziriski/Joumal of Geometry and Physics 20 (1996) 349-370 

to prove that 3 is a left B-module map. Take any b E B and u E P. Then 

F(bu) = bc&(u”‘) = bF(u), 

hence the map 3 is a left B-module map as stated. To show that 3 is right-invariant we 
take any u E P and compute 

ARF(u) = A~(u’l’f( cl@))) = di)f(u@+~)) 63 .(~)(,,(SU’~)(Z,)U’~,(4, 

=U ‘T,f(uci)(~j) 8 uci)(2) = (F 8 id)Anu. 

Finally we have to show that 3 is invertible. Consider a map 3 = id * f-l. First we 
observe that ARK-’ = (f-* @ id)Adn. This implies that 3 is right-invariant. It is also a 
left B-module homomorphism. Now we use the right invariance of 3 to compute 

3o3=3_*f =id*f-‘*f =id. 

Similarly, by the right invariance of 3 we obtain 3 o 3 = id. Therefore the map 3 is an 
inverse of 3 and the first part of the proposition is proven. 

Conversely, for any 3 E Aute(P) we define a map f : A + P, 

f = . o (id@& o t, (6) 

where t is a translation map. Explicitly f(a) = t(‘)(~)3(t(~)(u)). The map f is well- 
defined since 3 is a left B-module map. We need to show that f given by Eq. (6) satisfies 
the assertion of the proposition. Clearly, f (1) = 1. Next we derive the covariance property 
of f. We compute 

An f = AR 0. o (id@B3) o t = (@id) o Af’ o (id@B3) o t 

= (.@id) o (id@a3@id) o A: o r = (. o (id@n3) o t@id) o Adn 

= (f QDid)AdR, 

where in the third equality we used that 3 is an intertwiner, and in the fourth one we used 
the assertion 3 of Proposition 3.6. 

Consider a map f” : A + P given by Eq. (6) but with 3 replaced by its inverse 3-l. 
We show that the map f is a convolution inverse of f. We have 

fl(ac1,)f(acz,) = T%(l)) 3-1(r(2)(u(,))),‘(1)(a(*)) 3(r’(2)(a(2))). 

Using the assertions 1 and 2 of Proposition 3.6 we can easily see that the expression in the 
brace is in B. Since 3 is a left B-module map we obtain 

!bqdf (a(2)) = r(r)(a(1))3 (3-1(r(2)(a(t)))s’(1)(a(z))s’(2)(a(~))) 

=t (t)(u)r(z)(u) = E(U). 

To derive the second and third equalities we used the assertion 4 of Proposition 3.6. Similarly 
one proves that f * f = c. 
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Therefore we have established the correspondence between the vertical automorphisms 
and normalised, convolution invertible, Adn-covariant maps f : A + P. We need to prove 
that this correspondence is bijective. Denote by 6~ the map f I-+ id * f, and by 6~ the map 
F t-+ f, where f is given by Eq. (6). We will show that GA is an inverse of 0~. We have 

@A, 0 eA(f(a)) = &(id * f)(a) = 5 “‘(a)(id * f)(r’*‘(a)), 

where r(t)(a)@r(*)(a) E x-‘( l&z). But since s(‘)(a)r(2)(a)(i)~~(2)(a)(Z) = l&z, we 
obtain 

s”)(a)(id * f)(t(*)(a)) = r(l) (a)t’*‘(,)(i)f(,(z)(,)(2)) = f(a), 

hence 6A 0 eA(f) = f. 
Conversely, take any F E A&e(P). Then 

@A 0 ;&-T(u)) = .(i),cl)(,(z)) ~(t’*‘(dZ))) i 
for any u E P. Using Proposition 3.6 we see that the expression in the brace is in B. hence. 
because 3 is a left B-module map, 

Therefore the map @A has an inverse and the proposition is proven. cl 

It is easily seen from the proof of Proposition 5.2 that maps f : A -+ P form a group 
with respect to the convolution product. This group is denoted by d(P). In the classical case 
Proposition 5.2 allows one to interpret vertical automorphisms as cross sections of an asso- 
ciated adjoint bundle. This is because the elements of d(P) are in bijective correspondence 
with such cross sections by Proposition 4.7. In the general, non-commutative, situation there 
is no associated adjoint bundle and hence such an interpretation of vertical automorphisms 
is not possible. Still, as in the case of ordinary principal bundles, Proposition 5.2 implies 
the following: 

Corollary 5.3. Autg (P) Z d(P) as multiplicative groups. 

Proo$ In the proof of Proposition 5.2 we have defined the bijective map 0~ : d(P) + 
AutB( P). @A : f t-+ id * f. We need to show that @A is a group homomorphism. We take 
any fi , f2 E d(P) and compute 

eA(fl * f2) = id * fl * f2 = id(@A(fl)) * f2 = eA(f2) 0 @A(fl) = eA(fl )eA(.f?). 

From the proof of Proposition 5.2 it is clear that eA (f -’ ) = @A( f )-I. Furthermore, 
t9A (lc) = id * c = id, hence the map eA is a group homomorphism. 0 

Now we examine some properties of vertical automorphisms in the case of a trivial 
quantum principal bundle. In particular we identify vertical automorphisms of P (B, A, @J ) 
with gauge transformations. 
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Theorem 5.4. Let P(B, A, @) be a trivial quantum principal bundle. Then the groups 
AutB (P), A(P), and the gauge group d(B) are isomorphic to each other: If A and B are 
finite dimensional then the above groups are isomorphic to the group R(B) of all invertible 
elements v E B 63 A* such that (id 69 E)V = 1. 

ProoJ: We prove the theorem in three steps. 
1. Aut (P) 2’ d(P). This isomorphism has already been proven in Corollary 5.3. We 

remark only that the map 8,~ : Au tg (P) + d(P), defined in the proof of Proposition 5.2, 
has the following simple form 6~ : F H @-I * (F o @). 

2. d(P) 2 d(B). For any y E d(B) we consider a map 6~ (y ) : A --f P given by 

&j(y) = @-’ * y * @. 

It is clear that the map 8B(y) is convolution invertible and is such that 8e(v)( 1) = 1, 
and also 

AROB = (~B(Y) 63 id&k, 

hence @B(y) E d(P). Now we show that the map 6g : d(B) + d(P) is a group 
homomorphism. Take any yt , m E d(B), then 

@B&l * y2) = @-’ * yt * M * @ = Qi-* * yt * @ * @-’ * m * @ 

=@&I) * eB(V2>. 

To complete the proof of the isomorphism it remains to construct an inverse of 8e. 
Consider a map 8~ : d(P) --f Lin(A, P) given by 

&j(f)= @ *f&-l 

for any f E d(P). It is clear that for each f E d(P), &j(f) is a convolution invertible 
map such that 6~ (f > (1) = 1. Moreover, 

&%(f)(a) = ~(a(*))f(a(j))"'~-'(a(5)) @ a(2)f(qd2)Sa(q 
= @(ql))f (qI))@-‘(a(7)> @ a(2)(Sa(3)b(S)Sa(6) 

=8B(f)(a> @ 1. 

This proves that (?a( f) E d(B). It is now immediate that 6s is an inverse of 0~. 
Explicitly, 

(& 0 OS)(y) = 6&@-t * y * 0) = y 

and 

(eBoBe)(f)=eB(~*f*~-') = f. 

Therefore the required isomorphism holds. 



T. Brzeziriski/Joumal of Geometry and Physics 20 (1996) 349-370 36.5 

3. Finally we prove that if both A and B are finite-dimensional algebras, then d(B) E 
R(B). We consider a map 6)~ : R(B) + Lin(A. B), 

&:V=CUi@ViH~“=C(Vi, ‘)7J’, 
iCI ieI 

where ( , ) : A* @I A -+ k denotes the natural pairing. It is clear that for each u E R(B), 
~~(1) = 1, since 

VU(l) = c (Vi, 1)~’ = (E @ id)u = 1. 
iC1 

Also, yv is a convolution invertible map with the convolution inverse yL:’ = Y~,~I. 
Explicitly we have 

y” * y,,-I(U)= C (Vi, U(~))(lYj,LZ(*))U'~j = C (UiCj,LZ)U'Cj 

i,jEI i. jEI 

= (1,a) = E(U), 

where u-’ = cjer Vi @ iYj. Similarly one shows that ~“-1 * yv = E. Therefore for 
each u E R(B), we have that yv E d(B). Now we need to prove that OR is a group 
homomorphism. For any u, w E R(B) we compute 

= 
c (Vi Wj, U)U’Wj = v”w(U). 

i.jCI 

For an inverse of (3~ we take a map 8~ : d(B) + R(B) defined as follows. Let 
(@; fi E B) be a basis of B. Then for any y E d(B) and any a E A we can write 

where VP(U) E k are uniquely determined. Each vp may be regarded as an element of 
A* such that Y@(U) = (VP, a) for any a E A. Since vp are uniquely determined we can 
define a map 

These are the elementary facts that if y E d(B), then 6~ ( y ) E R(B) and that & is an 
inverse of 0~. 

This completes the proof of the theorem. 0 

Therefore Theorem 5.4 allows one to interpret a vertical automorphism of a (locally) 
trivial quantum principal bundle as a change of local variables and truly as a gauge transfor- 
mation of a trivial quantum principal bundle. Furthermore it gives a geometric interpretation 
of a universal R-matrix of a quasitriangular Hopf algebra H [7] as a gauge transformation 
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of the quantum frame bundle D(H)*(H, A) [3, Example 5.61, with a total space dual to 
Drinfeld’s double D(H) and the structure quantum group A = H* (cf. [2, Section 5.7.21). 

Gauge transformations have also a natural interpretation in terms of isomorphisms of 
crossed product algebras. Recall from [2,3] that a total space P of a trivial quantum principal 
bundle P(B, A, @) is isomorphic to B 8 A as a vector space. Define the crossed product 
algebra B@ >d A by equipping B @ A with a multiplication 

Then P 2 BQ x A as algebras. The isomorphism is given by 8~ : u H u(~)@-‘(u@)(~~) @ 

U(*)(Z). The following proposition is a special case of the result of Doi [6] (see also [15, 
Proposition 4.21). 

Proposition 5.5. Let P( B, A, @) be a trivial quantum principal bundle. Let for any 
triviulisution W of P( B, A, @), OY, : BP M A -+ BQ >a A be a crossed product algebra 
isomorphism such that 09 In = id and AR&U = (0~ @ id) An. Then there is a btjective 
correspondence between all isomorphisms Oyr corresponding to all triviulisations ly and 
the gauge transformations of P(B, A, Q). 

6. An example 

In this section we consider the simplest example of a trivial quantum principal bundle for 
which the gauge group can be computed explicitly. This example serves as an illustration of 
the considerations of Section 5 and in particular of the use of Theorem 5.4 in computations 
of the gauge group. It also shows that the quantum gauge group d(B) of a classical trivial 
principal bundle is much bigger than the classical gauge group of this bundle. We assume 
that k = C. 

Proposition 6.1. Let B be an M-dimensional semisimple algebra with unit and let A = 
C[G] be a group algebra of afinite group G of N elements. Let pt , 1 = 0, . . . , L - 1, be 
all non-equivalent irreducible representations of B. Then for any trivial quantum principal 
bundle P(B, A, CD), 

N:l 

where 

(7) 

Proof Since the gauge group depends only on A and B it suffices to consider the case 
P = B@A.Letbo = 1,bt . . . . bM-1 beabasisofB,andgu = l,gl,..., g&t be 
elements of G. Assume that the multiplication in B is given by 

btbj = C Nhbk, Nb E @. 
k=O 

(8) 
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First we show that the gauge group d(B) is a direct sum of identical groups. Let y E d(B) 
be given by y (gk) = Czil a:bi for some a; E C. By Theorem 5.4 there is a unique vertical 
automorphism 3 : B @ A + B @ A, canonically associated to y. Since all generators of 
A are group-like, 3 can be easily computed, 

M-l 

Since 3 does not act on elements of G, for each k = 0. . . . . N - 1, it may be regarded as 
a linear automorphism of B. Noting that fork = 0, 3 is the identity map, we thus obtain 

d(B) ~Aute(Bk3AA) =$hIG?-.@$ 

N-l 

where G may be identified with a group of all non-singular M x M matrices F(a) = 
(F(a)!)?.? with the entries I l.j-0 

M-l 

F(a)! = c ukNijk. 
k=O 

NextweobservethatthemapF: B + End(B),F: xEi’aibi H F(a),isarightregular 
representation of B. Since B has a unit, F is an algebra isomorphism. Therefore the matrix 
F(a) is non-singular if and only if xi”;’ a’bi is invertible. This gives the first description 
of G. Secondly we observe that because B is semisimple, F is completely reducible and 
it contains every irreducible representation of B at least once. Therefore det F(a) # 0 iff 
n&’ det ,Q (c!‘$’ Ui bi) # 0. This establishes the second description of 6. Cl 

Example 6.2. Let P = C[ZMN] E C[ 1, g]/(gMN - 1) and A = C[Z!,] = C[ 1, h]/(hN - 
1) have the standard Hopf algebra structure, i.e. Ag = g 63 g, Ah = h ~3 h, etc. Define 
a Hopf algebra projection n : P + A, YL : g H h. Let AR : P + P @I A be a right 
coaction given by a pushout AR = (id @ n) o A. Then B = PA is a subalgebra of P as a 
vector space spanned by (1, gN, . . . , gN(M-‘) } and hence is isomorphic to C[zM]. B is a 
semisimple algebra with unit as a group algebra. Clearly P( B, A, n) is a trivial quantum 
principal bundle on the homogeneous space B with trivialisation given by @(I : A -+ P, 

@,J : h” H g”, 0 5 n 5 N - 1. 
Since B is a commutative algebra all the irreducible representations Pk, k = 0. . , M - I, 

of B are one dimensional, 

pk (pN) = e(*nkmlM)i. (9) 

Therefore b = amgmN is an element of G iff Vk E (0, . , M - 11, ~~~~ ame(2rrkmlM)i # 
0. 

To gain further inside into the structure of 6 we consider the group homomorphism 
p : 6 + (@*p = C*@...@C*,p:bt+ (Po(b),...,PM_l(b)).Letb=C~~~a,g”N 
and ck = c,“= &,,e(2nkmlM)i = pk(b). Clearly the map p is injective. It is also surjective 
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since the Vandermonde determinant det(e(2kkmlM)i)j$.!, is non-zero. Therefore p is an 

isomorphism of multiplicative groups, 9 Z (C*)“, and d(B) = (@*)“(N-l). 
Using the properties of the Vandermonde determinants [ 17, pp. 322 and 3331 one easily 

finds that the inverse of p, p-’ : (co, . . . , CM-I) H Cfz,l amgmN is given by 

um=(-l)m MS: Mq’ (e2n(jiM)i - e2n(klM)i)-’ C 8omkck exp (init Mgl Iml) , 

j’;k 
m 

(10) 

where the second sum runs over all sequences m = (mo, . . . , mM_I), ml = 0, 1, such that 
mu+... +m~_t=M-l--m. 

The quantum principal bundle discussed in this example may serve as an illustration of 
the fact that the quantum gauge group d(B) of a classical principal bundle is much bigger 
that the classical gauge group Aalp( whose elements are algebra maps A --+ B. 

To compute dalg (B) we notice first that a gauge transformation y E datg (B) is fully de- 
termined by its action on h, hence d(B),,, may be identified with a subgroup of G = (C*)“. 
Secondly v(/z)~ = 1 because y is an algebra map. When y is viewed as (co, . . . , CM-l) E 

w*)M via the isomorphism p, the condition ye = 1 is equivalent to c! = 1. Hence 
each Ck is an element of &J viewed as a multiplicative subgroup of C* by ZN 3 n H 
eZKnilN E ‘C*. Therefore 

Finally we can show that the bundle P(B, A, n) of Example 6.2 is a classical trivial 
bundle in the sense that it admits a trivialisation which is an algebra map. Classifying all 
such trivialisations we classify all cross sections of P( B, A. n) which are algebra maps by 
Proposition 4.8. 

The algebraic trivialisation @J is fully determined by its action on h and also it must be 
related to @u by a gauge transformation. Therefore we must have Q(h) = Cfz,t a,gmN+’ 
for some a, E @. The trivialisation @ is an algebra map if and only if 0 (h) N = 1. This 
condition may be easily solved if we first notice that it must be satisfied in all represen- 
tations pk and then linearise the obtained system of equations by taking its Nth root. As 
a result we obtain the NM systems of M linear equations parametrised by the sequences 

(no, . . . . n&l), nk = 0,. . . , N - 1. Each such system may be easily solved using the 
properties of the Vandetmonde determinants. We obtain 

M-l M-l 
a, = (_ly C n (e*ri(jlM) _ e*ni(klM))M1 

k=O j=o 
j#k 

xc 6omk exp 2rri 
Ill ( ( 

-.L.L 
I=1 

lml+$ - & 
)J 

, 

where the range of the second sum is over all sequences m = (mo, . . . , rnM_1) as in (10). 
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We notice that for some choices of M and N, for example M = N = 2, there are no real 
solutions a, to the equation @ (h)N = 1. Therefore in these cases the bundle P(B, A, TC ) 
can be considered as a classical trivial bundle over C and as a trivial quantum bundle and 
non-trivial classical bundle over [w. 

Remark 6.3. Interesting examples of commutative semisimple algebras B come from the 
fusion rings of algebraic quantum field theories. A fusion ring is a ring with involution 
generated by bi subject to the relation (8) with N& E Z. To each bi one can associate a non- 
negative number d(bi) which has a meaning of a quantum dimension of a representation 
of an internal braided (or quasi-quantum) symmetry group, corresponding to bi. By the 
theorem of Rehren [20, Proposition 3.31 an element bi of a fusion ring is invertible iff 
d(bi) = 1. We can extend fusion ring to an algebra B over @ and we can extend linearly the 
function d to B. Therefore for such an algebra B, all elements of G have non-zero quantum 
dimension. The representation theory of fusion algebras is well-understood in many cases, 
hence in all those cases B can be explicitly determined. 

The algebra B of Example 6.2 is a fusion algebra of rational gaussian models of conformal 
field theory [22]. 3 
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